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We consider the change in electron localization due to the presence of electron-electron repulsion in the
Anderson-Hubbard model. Taking into account local Mott-Hubbard physics and static screening of the disorder
potential, the system is mapped onto an effective single-particle Anderson model, which is studied within the
self-consistent theory of electron localization. We find rich nonmonotonic behavior of the localization length �

in two-dimensional systems, including an interaction-induced exponential enhancement of � for small and
intermediate disorders although � remains finite. In three dimensions we identify for half filling a Mott-
Hubbard-assisted Anderson localized phase existing between the metallic and the Mott-Hubbard-gapped
phases. For small U there is re-entrant behavior from the Anderson localized phase to the metallic phase.
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I. INTRODUCTION

The research on interacting disordered systems is one of
the central topics in today’s condensed-matter physics. In
particular, the experimental signatures of a two-dimensional
�2D� metal-insulator transition in dilute disordered electron
systems,1 absent in the single-particle theory of Anderson
localization,2,3 have triggered many theoretical research ac-
tivities. As a prototype model for the interplay of strong cor-
relations and randomness, the Anderson-Hubbard model has
been intensely studied.4–13 While in electron systems the
bare Coulomb interaction is long ranged, inducing the addi-
tional question of the range of the effective interaction in a
disordered system, the Anderson-Hubbard model assumes an
on-site interaction which may grasp many of the salient fea-
tures of the electron-electron interaction. Disordered many-
body systems with tailor-cut short-range interactions have
most recently been realized experimentally as cold atomic
gases in random potentials.14 Despite these efforts, even in
systems with short-range interaction the existence of a me-
tallic ground state in d�2 dimensions has remained elusive.
Recent numerical works showed that the presence of inter-
actions can at least suppress significantly the localizing effect
of the disorder.4–9,15

One of the ideas proposed to explain the delocalizing ef-
fect is screening of the random potential by the interaction,
discussed controversially in the literature. A detailed analysis
of this screening effect is the subject of this paper. For that
purpose, our approach starts from the atomic limit of the
Anderson-Hubbard model. In the presence of a Hubbard in-
teraction U, the on-site energy of a particle depends on
whether this site is occupied by another particle or not, lead-
ing to an interaction-induced renormalization of the distribu-
tion of on-site energy levels. Below we argue that this effec-
tive disorder distribution of the atomic limit will still provide
a good description of the static interaction effects when a
finite hopping amplitude is included in the full Anderson-
Hubbard model as long as the fluctuations of the on-site

energy levels are large compared to the kinetic band energy
�hopping amplitude�. In particular, this will hold for arbi-
trarily large Hubbard interaction even when the localization
length becomes large. As seen below, the latter may occur
even for relatively strong disorder near the Anderson transi-
tion in three dimensions and as an interaction effect in two
dimensions. By this reasoning, the Anderson-Hubbard model
is reduced to an effective single-particle Anderson disorder
model2 with renormalized level distribution, for which we
calculate ensemble-averaged single-particle and transport
properties at temperature T=0. Clearly, inelastic as well as
virtual interaction effects are neglected by this approach. For
the present purpose they may, however, be unimportant due
to the vanishing quasiparticle relaxation rate16 at the Fermi
energy in 2D and three-dimensional �3D� disordered systems
for T=0.

In a previous work,17 we already presented an analytical
study of this approach, exploiting an exact relation18 between
the localization length and the ensemble-averaged single-
particle density of states �DOS� in one dimension. In accor-
dance with numerical results obtained for the Anderson-
Hubbard model,4–8 we could demonstrate that weak
interaction reduces the effective disorder �screening� while a
strong interaction effectively enhances the localization, cor-
responding to a hopping suppression by interaction �Mott-
Hubbard physics�.

In this paper, we extend our analysis by applying the self-
consistent theory of Anderson localization,19–21 which allows
for a quantitative analysis of the effective single-particle
Anderson disorder model in a broad parameter regime, par-
ticularly in two and three dimensions. Despite the simplifi-
cations made in our approach, we find good agreement with
recent numerical studies, especially in the Anderson local-
ized regime of one and two dimensions. Our analytical ap-
proach therefore allows for a critical assessment of some of
the conclusions drawn from the numerical results. Our re-
sults indicate that screening of the disorder seems to be the
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most relevant physical mechanism for the interaction-
induced delocalization effect in the disorder localized regime
of the Anderson-Hubbard model.

II. ATOMIC-LIMIT APPROXIMATION

We consider the Anderson-Hubbard model for fermions at
zero temperature on a hypercubic lattice in d dimensions
with lattice spacing a. It is described by the Hamiltonian

H = H0 + Hkin + He-e

= �
i,�

��i − ��ci�
† ci� − t �

�i,j�,�
ci,�

† cj� + U�
i

ni↑ni↓. �1�

ci�
† �ci�� are creation �destruction� operators of a fermion at

site i with spin � and ni�=ci�
† ci�. t is the nearest-neighbor

hopping amplitude, U�0 is the on-site repulsion, and � is
the chemical potential. The on-site energies ��i� are assumed
to be independent random variables with a box probability
distribution p���=��	 /2− ���� /	, where the disorder
strength is parametrized by the width 	. The lattice filling,
i.e., the average particle number per lattice site �summed
over spin�, will be denoted by 
.

In the atomic limit, t=0, the energy of a particle on site i
depends on the occupation number ni of that site and can be
obtained in the paramagnetic phase by shifting the bare on-
site energy �i according to17

�i �	
�i + U if �i � � − U

�i + U

if � − U � �i � �

�i

�i if �i � � .

 �each with probability of 1

2� �2�

The probability distribution pA��� of these renormalized en-
ergy levels is, hence, identical to the �averaged� spectral den-
sity of the Hubbard two-pole Green’s function in the atomic
limit �shifted by the chemical potential�. Examples of this
renormalized distribution are given in Fig. 1 and in Ref. 17.
There it was shown that for U�	 the variance of pA��� as
compared to p��� is reduced. On the other hand, it is evident
from Eq. �2� that for U	 the support of the distribution
pA��� splits into two disconnected intervals, leading eventu-
ally to a Mott-Hubbard gap in the averaged DOS of the
model �Eq. �3�� below.

When a finite hopping amplitude t�0 is switched on, the
particles become delocalized from a single site �with finite or
infinite localization length ��. The hopping induces quantum
fluctuations of the occupation numbers ni, and the on-site

energies are renormalized by self-energy corrections of lead-
ing relative order O��t /	�2�. However, since the average oc-
cupation number on each site is essentially determined by the
minimization of the local electrostatic energy, the atomic
limit approximation will still capture the essential static
physics of the Anderson-Hubbard model �disorder screening
and Mott-Hubbard physics�, as long as t�	, for arbitrary
U.22 In particular, this remains valid even for arbitrary local-
ization length � �Ref. 23� since the charge density may vary
on the scale of a lattice spacing, independently of the size of
�. With these assumptions the Anderson-Hubbard model is
mapped onto an effective single-particle Anderson disorder
model,

H = �
i�

��i − ��ci�
† ci� − t �

�i,j��
ci�

† cj�, �3�

with the renormalized on-site energy distribution pA���.
In d=1,2 dimensions, as well as in d=3 dimensions for

sufficiently strong disorder, all particles described by Hamil-
tonian �3� are exponentially localized.3 The decay of their
wave functions ��r�, in the limit r→�, is governed by the
localization length �. To analyze the effect of the repulsive
interaction on the localization, we study the U dependence of
�. For a first qualitative estimate we used in Ref. 17 the
relation18 �from now on we choose units where a= t=1�

�1
−1 = 

−�

�

N���log�E − ��d� � 
−�

�

pA���log�E − � + ��d� ,

�4�

valid in one dimension, where �1 is the wave-function decay
length, N��� denotes the disorder-averaged DOS, and E is the

FIG. 1. CPA density of states �solid lines� and renormalized
site-energy distribution pA��� �dotted lines� in d=2 at half filling for
	 / t=8 and �a� U / t=0, �b� 4, �c� 8.5, and �d� 12. Energies are
measured relative to the Fermi level.
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particle energy measured relative to the chemical potential.
The second approximate equality in Eq. �4� holds for 	� t.
For sufficiently large disorder, Eq. �4� becomes also a good
approximation in d�1 dimensions.24 In Ref. 17 we found
that for all lattice fillings 
 the localization length of a par-
ticle at the Fermi level, �1, is a nonmonotonic function of U
with a pronounced maximum at intermediate U.

III. SELF-CONSISTENT TRANSPORT THEORY

In order to extend our analysis of the effective single-
particle system �Eq. �3�� to two- and three-dimensional sys-
tems as well as to parameter regimes with large localization
lengths and to the calculation of general transport properties,
one must go beyond the restrictions of one dimension and
strong disorder implied by Eq. �4�. Therefore, we study the
system within the self-consistent theory of Anderson
localization.19–21 This theory constitutes a resummation of
the most divergent �Cooperon� contributions to the irreduc-
ible particle-hole vertex, leading to a self-consistent equation
for the dynamical diffusion coefficient. The theory was origi-
nally developed for weak disorder and was extended to arbi-
trary disorder later on.21,25,26 By comparison with direct nu-
merical diagonalization results,27 it was demonstrated that
for the noninteracting Anderson model this theory yields
quantitatively correct results for the phase diagram of Ander-
son localization in d=3 and for the localization length in d
=1,2 ,3 dimensions �with exception of the critical regime�.

For the interacting case with short-range instantaneous in-
teraction U, it is believed on general grounds that Fermi-
liquid theory remains valid in the presence of disorder. Then
the diffusion pole structure of the density propagator is pre-
served for particles at the Fermi energy �E=0� for tempera-
ture T=0. This was recently shown with the use of Ward
identities13 to hold strictly at least when disorder- and
interaction-induced self-energy contributions may be taken
to be additive.

In the formulation of Refs. 25 and 26 the self-consistent
equation for the diffusion coefficient D�� ,E� reads

D��,E� = D0�E� +
2 Im ��E�

�Im G�E��2D0�E� ddk

�2��d

� ddk�

�2��d �vk · q̂�
Im Gk�E��Im Gk��E��2

�k + k��p
2 − i�/D��,E�

�vk� · q̂� ,

�5�

where D0�E� is the bare diffusion constant,

D0�E� = −
1

Im G�E� ddk

�2��d �vk · q̂�2�Im Gk�E��2 �6�

and q̂ is the unit vector in the direction of the transport. The
disorder-averaged retarded single-particle propagators are
given in terms of the self-energy ��E� as

Gk�E� = �E + � − �k − ��E��−1, �7�

and G�E�=� ddk
�2��d Gk�E�. �k=−2�i=1

d cos�ki� is the dispersion
and vk=�k�k is the group velocity.

In Eq. �5� the diffusion pole structure of the integral ker-
nel holds strictly for Q= �k+k���2� /�, where � is the elas-
tic mean-free path. For larger Q the integral kernel does not
vanish but behaves in a nonsingular way. Therefore, the mo-
mentum integrals in Eq. �5� must not be cut off for Q
�2� /� but extend over the complete first Brillouin zone of
the lattice.25,26 Furthermore, one has to keep in mind that not
only the single-particle Green’s function but also the
particle-hole propagator obey lattice periodicity with respect
to their momentum arguments. In particular, the particle-hole
propagator, which enters into the integral kernel of Eq.
�5�,20,26 is lattice periodic with respect to the center-of-mass
momentum of the particle-hole pair. However, in Eq. �5� this
periodicity is not explicit since the diffusion pole form of the
kernel arises from a hydrodynamic expansion for small Q
and �. To restore the lattice periodicity in the transport prop-
erties, the subscript p in the denominator of the kernel of Eq.
�5� implies a shift by a reciprocal-lattice vector so as to keep
the momentum argument k+k� within the first Brillouin
zone.

The localization length � for particles at the Fermi energy
is defined as the exponential decay length of the density
correlation function in the static limit,20,28

� = lim
�→0

�D��,0�
− i�

, �8�

where in the localized phase the diffusion coefficient is
purely imaginary to first order in � and vanishes linearly for
�→0.

For the evaluation of the theory, we first calculate the
disorder-averaged single-particle quantities, i.e., the self-
energy ��E� and the local Green’s function G�E�, within the
well-known coherent-potential approximation29 �CPA�. The
CPA is known to interpolate disorder-averaged single-
particle quantities correctly between the limits of weak and
strong disorder, neglecting only exponentially rare disorder
configurations �Lifshitz tails of the DOS�, and provides
quantitatively reliable results for disorder-averaged single-
particle quantities over the complete parameter range.26 It is
defined in connection with Eq. �7� and the renormalized level
distribution pA��� by the self-consistent relation,

 d�pA���
� − ��E�

1 − �� − ��E��G�E�
= 0. �9�

After the single-particle quantities are determined, the dif-
fusion coefficient D��→0,0� or the localization length �,
respectively, is calculated by solving numerically Eqs. �5�
and �6� with Eq. �8�. The two static interaction effects, dis-
order screening and Mott-Hubbard gap formation, are incor-
porated in the single-particle transport theory through the
quantities Gk�E=0� and ��E=0�, determined by the renor-
malized distribution pA���.

In our static treatment of the interaction term, the hopping
of a particle at the Fermi level was assumed to happen on a
background of immobile particles. In the case of singly oc-
cupied sites, the spin of these particles was considered to be
randomly distributed. Therefore, in the absence of the site-
energy disorder, i.e., 	→0, Eq. �9� reduces to the Hubbard
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III approximation30,31 and, consequently, can be understood
as an average over both spin and site-energy disorder. Impli-
cations and restrictions on the applicability of our approach
will be mentioned in the discussion of our results in the
following sections.

In d�1, the evaluation of the 2D integrals in Eq. �5� is
numerically costly. Taking advantage of the periodicity of the
integrands, this problem can be overcome by rewriting the
factors in the integrand as Fourier series and using the con-
volution theorem. While for weak disorder the evaluation of
the Fourier series is numerically still somewhat costly be-
cause of the pronounced peak structure of the Green’s func-
tions, the Fourier series converges quickly for larger disor-
der. The solution of the self-consistent �Eq. �5�� is easily
performed on a single desktop computer.

IV. RESULTS AND DISCUSSION

The transport theory described above allows one to ana-
lyze in detail the static disorder screening effect of the Hub-
bard repulsion U in the Anderson-Hubbard model in arbi-
trary dimensions.

A. Two-dimensional systems

Figure 1 shows the 2D DOS N�E�, computed within CPA
from Eq. �9�, for a fixed disorder strength 	 and different
values of the repulsion U. The figure clearly exhibits the
regime of interaction-induced screening of disorder for small
values of U, characterized by a narrowing of the disorder-
averaged DOS with increasing U �Figs. 1�a� and 1�b��. It also
shows the regime of hopping suppression for large U, where
the Mott-Hubbard gap gradually develops with increasing U
�Figs. 1�b�–1�d��. The crossover between the two regimes
occurs roughly at U�	. Note that the present static approxi-
mation does not describe the Kondo-like quasiparticle reso-
nance at the Fermi level that would be induced by dynamical
processes in high dimensions near half filling.32 Therefore, it
does not capture the typical many-body effects at the metal-
insulator transition and inside the correlated metallic phase,
known to be important when 	→0.

Figure 2 shows the generic behavior of the localization
length at the Fermi level, ��U�, as a function of the repulsion
U for �a� strong and �b� intermediate disorders 	. The most
salient feature seen in Fig. 2 is the nonmonotonic behavior of
the localization length with a pronounced maximum at an
intermediate value 0�U��	. Within the one-dimensional
�1D� or strong disorder24 approximation �Eq. �4��, U� can be
calculated as U��U�

�1D�=	��1+3
�2−
�−1� /3.17 As seen
in Fig. 2, this provides even in d=2 an excellent quantitative
estimate for the results of the self-consistent theory not only
for large disorder, as expected, but also for intermediate dis-
order. The nonmonotonic behavior is reproduced by numeri-
cal methods for finite-size systems, i.e., by quantum Monte
Carlo �QMC� simulations4,7 and statistical dynamical mean-
field theory �DMFT�,8 with the maximum of ��U� occurring
almost precisely at U�

�1D�. In the case of the QMC results7 the
nonmonotonicity can be inferred from the dependence of the
finite-temperature conductivity on U. In Ref. 8 the on-site

energies were calculated as poles of the atomic limit Green’s
function of the Anderson-Hubbard Hamiltonian, resulting in
precisely the same Hamiltonian as our effective model �Eqs.
�2� and �3��. In Ref. 8 this Hamiltonian was then diagonal-
ized numerically exactly for finite-size systems according to
the statistical DMFT approach, and the localization length
was extracted from the disorder-averaged inverse participa-
tion ratio �IPR� using the definition

� ª �IPR�−1/d. �10�

We find good agreement with the results of Ref. 8 for all
parameter values available up to a factor of order unity. This
factor might be attributed to the slight difference in their and
our definitions of � �Eqs. �8� and �10��, respectively. This
agreement lends additional support to the quantitative cor-
rectness of the results of the self-consistent transport theory
within the atomic limit approximation.

In our semianalytic theory the nonmonotonic behavior of
� is easily traced back to the two competing interaction-
induced effects: screening of the random potential and DOS
suppression due to a Mott-Hubbard gap. Both effects are
already incorporated in the effective distribution pA���, as
seen in Fig. 1: under an increase in U, the effective disorder
is initially reduced, leading to an increase in �. For large U,
however, the formation of a Mott-Hubbard gap implies a
reduction in the DOS at the Fermi level and a broadening of
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FIG. 2. �a� Localization length � at the Fermi level �E=0� in
d=2 as a function of U for 	 / t=8 and two different band fillings.
The arrows indicate the positions of the maximum of � as obtained
from Eq. �4� for a 1D system �Ref. 17�. At the Mott transition for

=1 �vanishing N�0� due to Mott-Hubbard gap formation�, ��U�
vanishes exponentially as ln ��U��−1 /2N�0� because of the loga-
rithmic divergence of the Cooperon integral in Eq. �5� in d=2. The
inset shows the critical interaction strength, Uc�	�, for the Mott
transition at half filling. �b� Localization length � at the Fermi level
as a function of U in d=1 and 2 at half filling, 
=1, for 	 / t=4. The
exponential enhancement of �2D�U��exp�1 /	eff

2 � in d=2 due to
interactions is clearly seen while in d=1 the dependence is com-
paratively weak �Refs. 20 and 26�, �1D��	eff�U��−1/2 �see text�.
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the disorder distribution and, hence, a reduction in � with
increasing U �Fig. 2�a��.

In Ref. 5 the interaction strength was fixed and the IPR as
a function of the disorder strength was studied. That work
was based on a local unrestricted Hartree-Fock treatment of
the interaction and subsequent exact diagonalization of the
resulting effective disordered single-particle Hamiltonian.
Our results show a nonmonotonic behavior of the IPR with a
pronounced suppression �i.e., increase in �� for intermediate
disorder, as seen in Fig. 3�a�, in good agreement with the
finite-size data of Ref. 5.33 Our theory indicates that this
results from an intricate competition of Anderson localiza-
tion and correlation-induced disorder screening effects: for
small increasing 	 the IPR increases from zero due to Ander-
son localization in d=2 for arbitrarily weak disorder. As 	
increases further to intermediate values, the effective disor-
der potential, derived from Eq. �2�, is reduced by the screen-
ing effect until 	�U, resulting in a suppression of the IPR.
Finally, when 	�U, the on-site repulsion U cannot induce a
further significant change in local occupation numbers as 	
grows; hence the effective disorder potential and the IPR
increase.

Because of the logarithmic divergence of the Cooperon
integral in Eq. �5� for d=2, the disorder screening effect can
induce an exponentially large effect as seen in Fig. 2�b�. To
demonstrate this screening-induced delocalization effect
quantitatively, we show in Fig. 3�b� the ratio ��U�� /��U
=0� of the maximal interaction-enhanced localization length
and its noninteracting value. The effect is especially strong
for weak disorder in d=2, where � depends exponentially on
the screening-reduced disorder strength 	eff of the effective
Anderson model �Eqs. �2� and �3�� ��exp�1 /	eff

2 �.34

In Refs. 5 and 7 also the observation of a metallic phase
was reported. The existence of such a phase is not possible in
an effective single-particle model3 and would consequently

be beyond our approach. However, the good agreement of
our results with the finite-size data of these works and the
observation of the exponentially enlarged localization length,
which exceeds the largest system size used in the numerics,
suggests strongly that the infinite-size extrapolations errone-
ously indicated a true metallic state in d=2.35

The remarkable quantitative agreement of our theory with
the results of numerical calculations wherever comparison is
possible suggests that the essential physics of localization in
the 2D Anderson-Hubbard model is captured by the assump-
tions of static disorder screening and Mott-Hubbard gap for-
mation.

B. Three-dimensional systems

In d�2, the noninteracting Anderson model describes a
disorder induced metal-insulator transition, where extended
and localized states are separated by the mobility edge.3

Hence, the question about a possible disorder reduction by
interaction gets even more relevant. We have calculated the
phase diagram of localization in d=3 using the atomic limit
approximation �Eqs. �2� and �3�� with the self-consistent
transport theory of Anderson localization �Eqs. �5�–�9�; see
Fig. 4�.

The figure shows, for different values of the lattice filling

, the disorder screening effect: above the critical disorder
value for Anderson localization without interaction36 	c / t
�11.7, the increase in interaction leads to a re-entrance from
the Anderson insulating into the metallic phase, i.e., the me-
tallic phase is extended to larger values of 	. This behavior
was also observed in a recent DMFT study12 of the
Anderson-Hubbard model where a site-dependent self-
energy correction was used. Contrarily, generalized DMFT
studies based on site-independent averaged self-energy cor-
rections do not describe the screening effect.13
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FIG. 3. �a� Inverse participation ratio �−2 as a function of the
disorder strength 	 in d=2 for U / t=4 at half filling �
=1�. The
exponential suppression of the IPR for small disorder and the ab-
sence of the nonmonotonic behavior in the noninteracting case �U
=0� are also shown �dashed line�. �b� Magnitude of the delocaliza-
tion effect as a function of disorder strength in d=1 and 2.
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FIG. 4. �Color online� 3D phase diagram in the �U ,	� plane for
different lattice fillings 
. The metallic phase �M� is to the lower left
while the insulating phase �I� is to the upper right of the solid
mobility edge curves for 
=1.00, 0.75, and 0.50, respectively. The
dashed curve shows the critical interaction strength for the Mott
transition at half filling. The dotted line is an extrapolation of the
mobility edge for 
=1 toward small disorder, where the evaluation
of the self-consistent Eq. �5� becomes numerically costly. The cor-
responding Anderson, Mott-Hubbard, and Mott-Hubbard assisted
Anderson insulating regions at half filling are marked by AI, MHI,
and AI�M�, respectively.
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For the half-filled case �
=1� a further increase in U
eventually leads to a suppression of the averaged DOS at the
Fermi level, N�0�, because of the gradual formation of a
Mott-Hubbard gap �dashed line�. Consequently the system
undergoes first a transition from the metallic phase to a
�Mott-Hubbard assisted� Anderson insulator with a reduced
but finite N�0� just before the DOS vanishes at the dashed
line and the Mott-Hubbard insulating phase is entered. This
intermediate phase is not likely to be seen in DMFT studies
of the problem12,13 because within DMFT the formation of a
Kondo resonance and the concatenated unitarity sum rule for
N�0� in the metallic state prevent a Mott-Hubbard-induced
suppression of N�0� and lead to a complete screening of the
disorder potential.12,13 It remains to be seen whether in the
physical 3D disordered systems Kondo physics or pseudogap
formation dominates.

Away from half filling, a pure Mott-Hubbard transition is
not possible because N�0� remains nonzero. Therefore, for
weak disorder the metallic phase extends out to arbitrarily
large U. However, for large U �U / t�10� increasing disorder
	 does induce an Anderson metal-insulator transition, and
this transition occurs at a substantially smaller value of 	
than for small and intermediate U / t�7 because of a Mott-
Hubbard reduced DOS at the Fermi level �pseudogap�. It is
interesting to note that this interplay of Anderson localization
and Mott-Hubbard physics away from half filling leads to a
steplike behavior of the phase boundary, as seen in Fig. 4,
connecting smoothly to the phase boundary of the half-filled
case.

V. CONCLUSION

We have presented a self-consistent study of the static
disorder screening effect and of Mott-Hubbard gap forma-
tion, induced by the local repulsion in the Anderson-Hubbard
model. Both of these effects are represented by an
interaction-induced renormalization of the effective distribu-
tion of on-site energy levels and a subsequent mapping of the
Anderson-Hubbard model onto a single-particle Anderson

model. While this mapping is exact in the atomic limit, we
have argued that it still provides a good description of the
static screening effect for finite hopping amplitude even
when the localization length � is large. The localization prop-
erties of the effective single-particle Anderson model were
then treated by the self-consistent theory of Anderson
localization.19,26 We found rich behavior of the localization
length in two dimensions and of the phase diagram in three
dimensions due to an intricate interplay of disorder screening
and Mott-Hubbard physics in the different regions of param-
eter space.

Despite the technical simplicity of our approach, it yields
good agreement with numerical studies4–8 of the same prob-
lem for two-dimensional finite-size systems, including the
nonmonotonic dependence of � on both the interaction
strength U and the disorder 	. At the same time, we found in
d=2 an exponential interaction-induced enhancement of �
for weak and intermediate values of 	 although a true me-
tallic state is not possible within our effective single-particle
theory. The good agreement of our results with the numerical
finite-size calculations and, simultaneously, our prediction of
a large but finite localization length show that the indications
of a true metallic state, found in some works by infinite-size
extrapolations of the numerical data, are not conclusive.
These indications might rather be due to the fact that the
largest system sizes were still smaller than the localization
length of the infinite system.

For three-dimensional systems we found that for weak
Hubbard interaction U the disorder screening effect results in
a re-entrant behavior from the insulating to the metallic
phase, while for large U disorder and Hubbard interaction
cooperate to form a Mott-Hubbard assisted Anderson insu-
lating phase �with finite density of states at the Fermi level�,
which exists in a finite range between the metallic phase and
the Mott-Hubbard-gapped phase present for half filling.
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